Towards a Global High-Resolution Inundation Map: African continent application

Étienne Fluet-Chouinard, Bernhard Lehner M.Sc Student, McGill University

Presentation Outline

- Intro: Global wetland inventories
- Objective
- Methods:

Downscaling with topographic inundation probabilities

- Results: Downscaled inundation maps
- Follow-up:

Global mapping progress & customization

- Application: Mekong basin ecosystem connectivity
- Conclusion

Intro: Global wetland area

Ada Wa	apted from MEA – Inland ter Systems Chapter	Bottom-up	Aggregation of		
(Fin	alayson et al. 2005) COM	pilation of inventories	existing global maps		
		GRoWI: Global Review	GLWD: Global Lakes and		
6	Geopolitical Region	of Wetland Resources	Wetlands Database		
		(Finlayson et al. 1999)	(Lehner and Döll, 2004)		
		(thousand km ²)			
	Africa	1,247	1,314		
	Asia	2,043	2,856		
	Europe	2,580	260		
	Neotropics	4,149	1,594		
	North America	2,416	2,866		
	Oceania	358	275		
	Total Area	~ 12,792	~ 9,167		
+ Lakes and Rivers		+ 0	+ 2670		
		12792	11846		
+	Max. Fractional classe	es + 0	+ 952		
	Reviewed Area	12792	12798		

Intro: Global Spatial Inventories

Global Lake & Wetland Database (GLWD)

Maximum wetland extent.

Aggregation of global datasets creates inconsistencies.

Compounds errors from source data.

Global Surface Water Extent Dataset (GSWED)

Monthly cell inundated fraction.

Generated from multi-satellite method.

Coarse res. doesn't distinguish distinct waterbodies nor detects low inundation fractions.

Intro: Inventorying Challenges

Conventional approaches struggle to produce a complete global wetland inventory:

- Aggregation of regional map: Definition inconsistencies and untraceable errors.
- Remote sensing imagery: Spatial VS Temporal resolution trade-off.

A novel approach is required to circumvent these methodological hurdles.

Research Objective

Produce a global inundation extent map: -High spatial resolution for conservation applications -Based on actual observations for continued monitoring

-Globally consistent for comparison across regions

Methods: Available Global Datasets

GSWED - Global Surface Water Extent Dataset

(*Papa et al. 2010*)

HydroSHEDS

(Lehner et al. 2008)

Methods: Available Global Datasets

GSWED - Global Surface Water Extent Dataset

(*Papa et al. 2010*)

(Lehner et al. 2008)

Inundated fraction of cell (%)

Topographic & Hydrographic

River network and basin outlines erived from SRTM elevation data at

~ 27 km at equator

1 - 10% 11 - 20% 21 - 30% 31 - 40% 41 - 50% 51 - 60% 61 - 70% 71 - 80% 81 - 90% 91 - 100%

Monthly

1993 to 2004

~ 500 m at equator

Major basin

Endorheic basi

TUVGI

articularly those of endormes epresent dry valleys

Static

snapshot of 2000

Kilometers

Method: Topographic Downscaling

Downscale GSWED inundated area to finer resolution of HydroSHEDS.

Use topographic information to allocate inundated area to high-resolution pixels.

Methods: Inundation Probabilities

The predictive information of inundation occurrence from topography summarized into topographic inundation probabilities.

Methods: Inundation Probabilities

Methods: Inundation Probabilities

Methods: Probability Thresholding

Methods: Probability Thresholding

Methods: Downscaling Accuracy Validation

Evaluates spatial distribution of downscaled inundation from probability map over validation areas.

compared

Producer Accuracy:84.3%Overall Accuracy:92.3%Kappa Index:80.1%

Methods: Recap.

Methods: Fusion of GLWD & GSWED

Inundated area from GLWD & GSWED merged, based on their values in each cell.

Methods: Fusion of GLWD & GSWED

Inundated area from GLWD & GSWED merged, based on their values in each cell.

Methods: Africa Total Wetland Area

Note: artificial inundation from irrigated rice paddies account for 8.7 thousand km² over the continent.

Results: Downscaled Inundation Maps

Mean Annual Maximum

Fusion Maximum

Results: Downscaled Inundation Maps

Results: Study Sites

Results: Study Sites Metrics

	GLC2000	Redist GLC2000	GLWD	GLWD Redist.	Hist.Fusion	GSWED HistMax	
Okavango	- 8,528 km ²	41.6%	51.2% 14,969 km ²	40.1% -	37.2% 12,573 km ²	- 3,59 <mark>6</mark> km ²	
Sudd Marshes	- 31,331 km ²	63.7% -	58.3% 32,961 km ²	50.5% -	34.9% 57,589 km²	- 24,216 km ²	Kappa Index of Agreement (%) &
Congo	- 143,256 km²	61.6% -	51.4% 198,179 km²	<mark>52.8%</mark> -	41.6% 134,061 km ²	- 44,796 km ²	
Nile	- 12,475 km²	69.6%	3.9% 2,877 km²	14.4%	47.6% 20,812 km²	- 18,772 km ²	Inundated Area (km²)
Zambezi Delta	16,660 km ²	59.7%	25.0% 8,055 km²	28.9%	<mark>52.8</mark> % 18,309 km ²	7,396 km ²	

Follow-up: Global Mapping Progress

- : Inundation Extent Map
- : Inundation Probabilities
- : Not Mapped

Follow-up: Product Customization

Method designed for different resolutions.

Temporal Resolution

Current: Mean Annual Maximum Historical Maximum (from Fusion)

Minimum: Monthly

Spatial Resolution

Current:500mReproducible at:90m or 1000m

Application: Mekong Basin Inundation

Application: Mekong Basin Connectivity

(Lehner et al., in prep)

Conclusion

Provides improved wetland baseline inventory

- Superior spatial res. than other global inventories
- Globally consistent, quantified accuracy.

Much room for improvement in future

- Cannot distinguish natural from artificial inundation
- Monthly temporal variations depends on GSWED
- Possibility to improve map accuracy with:

Additional reference data Downscaling method optimization Improved inundation GSWED estimates.

Thank You !

Questions?

Literature Cited

Bwangoy, J.-.B., Hansen, M.C., Roy, D.P., Grandi, G.D. & Justice, C.O. **2010**. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices, Remote Sensing of Environment, vol. 114(1), pp. 73-86.

- Finlayson, C.M., Davidson, N.C., Spiers, A.G. & Stevenson, N.J. 1999. Global wetland inventory Current status and future priorities, Marine and Freshwater Research, vol. 50(8), pp. 717-727.
- Finlayson, M. & D'Cruz, R., Davidson N. 2005. Millenium Ecosystem Assessment Chapter 20: Inland Water Systems.
- Lehner, B, and P Doll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, no. 1-4: 1-22. Lowry and Taylor, 2007
- Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos 89, no. 10.
- Lehner, B., Grill G., Ouellet-Dallaire C., Fluet-Chouinard, E., in prep., Ecosystem fragmentation and flow regulation in the Mekong River Basin due to past and future dam development:
- Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A., 2004. A new land-cover map of Africa for the year 2000", Journal of Biogeography, vol. 31(6), pp. 861-877.
- Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B. & Matthews, E., 2010. Multi-Satellite Remote Sensing of Global Surface Waters Extent, 1993-2004. Journal of Geophysical Research, vol. 115(D12111), pp.1-17.

Extra Slides

Reference Data (for train/valid.)

Moving Window Thresholding

Reference Data

Data Source	Region	Wetland/Inundation Definition
University of Maryland – Water Mask (UMD) (Carroll et al. 2009)	African Continent	Open water bodies from the SWBD (Slater et al. 2006) combined with MODIS remote sensing (Carroll et al. 2009).
Central Africa Regional		General wetland definition, to distinguish from non-
Program for the Environment	Central Congo	wetland upland forests. Map produced from
(CARPE) – Congo Wetland	Basin	thresholding of wetland probabilities from remote
Map (Bwangoy et al. 2010)	The said	sensing and topographic indices.

Methods: Moving Window Thresholding

Reallocation of inundated area among adjacent cells based on probabilities of each cell.

Reallocation does not significantly alter total inundated area.